李克训 1,2,*马江将 1,2张泽奎 1,2马晨 1,2[ ... ]王东红 1,2
作者单位
摘要
1 中国电子科技网络信息安全有限公司, 成都 610041
2 中国电子科技集团公司第三十三研究所 电磁防护材料及技术山西省重点实验室, 太原 030032
基于碳纳米材料有序结构优异的结构与功能特点, 研究了其在新型电磁防护材料中的应用, 结合环氧树脂与碳纳米有序结构在电磁屏蔽效能和力学性能方面表现出的显著优势, 论述了环氧树脂基碳纳米管复合电磁屏蔽材料和碳纳米管有序纳米结构研究, 通过电磁仿真优化设计构筑三维导电网络结构, 得出8~12 GHz电磁波段屏蔽效能≥82.96 dB的理想结构模型, 为环氧树脂基碳纳米复合电磁屏蔽材料研究开发提供了指导, 有利于该新型电磁屏蔽材料在**、国民经济各领域的应用。
碳纳米管 环氧树脂 电磁屏蔽 理想模型 有序结构 carbon nanotube epoxy resin electromagnetic shield ideal model ordered structure 
强激光与粒子束
2019, 31(10): 103204
赵亚丽 1,2李旭峰 3贾琨 1马江将 1,2[ ... ]魏学红 2,*
作者单位
摘要
1 中国电子科技集团公司第三十三研究所电磁防护材料及技术山西省重点实验室,山西 太原 030006
2 山西大学化学化工学院,山西 太原 030006
3 太原科技大学应用科学学院,山西 太原 030024
本文描述了由不同厚度的ITO 和Ag 层制成的一维金属介质光子带隙材料1D M-D PBG 的光学透射和反射特性。研究发现,单元尺寸小于80 nm 的金属结构和较小的金属分数会导致光学透射率的提高。对于大于80 nm 的单元尺寸,在可见光的低频和高频的频谱范围内反射率都相应增强。这是由于一种特殊结构和等离子体的带隙的作用。此外,在两个范围内的反射随着增加银膜厚度的增加而提高和扩大。结构引起的反射光谱随着单位尺寸的增大而增大,并且由于等离子体光子带隙的反射超出光学范围。研究结果对1D M-D PBG 光学滤波器的设计有一定的参考价值。
金属光子晶体 光学透射率 光学反射 metal photo crystals optical transmittance optical reflection 
光电工程
2018, 45(11): 180239
作者单位
摘要
1 No.33 Research Institute of China Electronics Technology Group Corporation, Taiyuan 030006, China
2 Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei 230026, China
metallic photonic crystal film surface plasmon visible light transmittance electromagnetic shielding effectiveness 
光电工程
2017, 44(2): 238
赵亚丽 1贾琨 1张晗 1马江将 1[ ... ]明海 2,*
作者单位
摘要
1 中国电子科技集团公司第三十三研究所,太原 030006
2 中国科学技术大学光学与光学工程系,合肥 230026
一维金属光子晶体薄膜是由金属-介质多层结构组成的等效均匀的各向异性超构材料。相比单层金属膜层,该结构在色散调控方面具有更多的自由度。在该结构中由于表面等离子体激元(SPP)的存在,可实现倏逝波的定向传输。在本文中,等效介质理论、时域有限元差分法(FDTD)的计算结果和实验结果都表明,传输倏逝波的波长、频宽和强度可通过金属光子晶体结构调整实现主动设计。金属膜厚比例越小,传输波长的中心和截止波长越长,频带越宽。当金属膜层厚度小于SPP穿透深度时,可获得宽频段的倏逝波的传输。同时,对金属光子晶体在微波波段的传输性能也进行了研究,发现其在微波波段等效介电常数为负,具有良好的反射性能。该结构的屏蔽效能远大于厚度相近的ITO薄膜的电磁屏蔽效能。在厚度只有几百纳米时,该结构即可实现良好的电磁屏蔽效能。通过金属光子晶体薄膜可实现电磁屏蔽材料的薄膜化、轻质化和可视化。
金属光子晶体薄膜 表面等离子体激元 可见光透光率 电磁屏蔽效能 metallic photonic crystal film surface plasmon visible light transmittance electromagnetic shielding effectiveness 
光电工程
2017, 44(2): 226

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!